ensayo-enlace

Norma Juan
Get your own at Scribd or explore others:

atuoevaluacion de cneros escolares

lunes, 16 de junio de 2008

LECTURA: Razón y Proporción
Un concepto y muchas posibilidades

Olimpia Figueras, Gonzalo López
Alicia Avila

FICHA DE COMENTARIO


Con base en el libro del maestro de segundo grado y el plan y programas de la SEP y la experiencia que he tenido en dos años en este grado algunos propósitos de matemáticas y específicamente el del razonamiento proporcional se considera ya en este grado aunque de manera encipiente o el profesor planea y se diseñan problemas cotidianos en donde se pretende que el niño vaya construyendo las nociones mas importantes relacionadas con el concepto de proporcionalidad aplicándolas en la resolución de problemas reales, comparando cuantitativamente, de manera aditiva, para iniciarlo en el proceso de la multiplicación sin llegar al concepto convencional del algoritmo.

Si los maestros de los primeros ciclos aplicaran estas estrategias, estaríamos sembrando la semilla para que al llegar al segundo y tercer ciclo el alumno tendría una base conceptual para resolver diferentes tipos de problemas; que se desprenden de la base que es la proporcionalidad.

1) La noción de la razón
2) Escala
3) Porcentaje
4) Variación proporcional y no proporcional (aditiva, multiplicativa, inversa, proporcionalidad)
5) La regla de tres (precio de productos)
6) Duplicación (Recetas de cocina)

Ya sabemos que este proceso es largo y lento por eso es necesario que el maestro diseñe actividades apropiadas para cada ciclo, sin olvidar que sería infructuoso si lo planteamos de una manera mecánica.














LECTURA

Las fracciones en situaciones de reparto y medición.
Martha Dávila, Olimpia Figueroa

FICHA DE COMENTARIO


Tradicionalmente el profesor que enseña fracciones toma como punto de partida el fraccionamiento de una unidad, pintando y colocando la fracción que indica la actividad, provocando dificultades en su aprendizaje en el concepto fracción. Uno de los motivos para esta dificultad es que el docente no toma en cuenta los saberes previos o extraescolares que el niño ya maneja. La pobreza de los significados de la fracción que se manejan en la escuela, la tendencia de los niños de dar a los números fraccionarios las propiedades y reglas aplicables a números enteros, la introducción prematura y errónea de la noción de la fracción, del lenguaje simbólico y sus algoritmos. La propuesta para sentar las bases de este aprendizaje es la de utilizar familias de problemas de reparto y medición como un medio para introducir el concepto fracción. El objetivo es que el niño aprenda a hacer particiones equitativas y utilice la partición como herramienta en la resolución de problemas de reparto y medición, compare fracciones sencillas, exprese de manera verbal el resultado de reparto. Descubra que los números enteros son insuficientes para hacer reparticiones exactas.

Le corresponde al maestro de los primeros años escolares plantear problemas sencillos en donde se repartan juguetes, dulces, y establecer las bases para la noción de fracción. Una recomendación será el trabajo en equipo, de 3, 4, 5 y proporcionarle material manipulable para que “Repartan equitativamente” entre todos los integrantes del equipo.

Los procesos de medición de longitudes, superficie, volumen, capacidad, peso, tiempo dan lugar al fraccionamiento de la unidad. Se sugiere que este tipo de actividades se inicien con la medición de longitudes con tiras en donde con un doblado puedan fraccionar en medios, cuartos, etc., ejemplo mi libro mide 2 tiras y una mitad. Se debe trabajar esta actividad de preferencia por equipos y el maestro observara el trabajo y hara preguntas que lleven a la comprensión de lo que hacen, al revisar los trabajos estos se deben hacer de manera colectiva para confrontar diversos puntos de vista.











LECTURA

¿Qué significa multiplicar por 7/4?

Hugo Balbuena y David Block

Al realizar la actividad que muestra el libro y plantear el problema de entregar un rompecabezas y decir que el rompecabezas se tenía que hacer mas grande de manera que la parte que mide 4 deberá medir 7 en el nuevo se obtuvo el resultado siguiente.

Al obtener las posibles soluciones se notó la ausencia parcial en algunos alumnos y total en otros.

Parece que la multiplicación como operación sigue vinculado a la idea de numero entero de veces mas grande y al de la suma iterada.

La situación del rompecabezas tiene la cualidad muy importante enfrenta a los alumnos a un hecho empírico observable por ellos que se resisten a sus hipótesis iniciales.

La evidencia empírica aunada a la ausencia de una solución conceptual propicia la construcción de este concepto y la generación de soluciones.

Cuando los niños llegan a utilizar las decimales para la solución de problemas es un paso importante. El docente tendra que propiciar en el salón de clases el aprendizaje de una matemática con significado para los alumnos, con un significado que se origina en situaciones en las que los contenidos matemáticos, funcionan, en los problemas que resuelven e implican retos didácticos.





















LECTURA: La Geometría en la enseñanza elemental APMEP
GEOMETRIA


LIMITACIONES DE LA ENSEÑANZA TRADICIONAL DE LA GEOMETRIA
OPCIONES PARA MEJORAR LA ENSEÑANZA DE GEOMETRIA
Se redujo a la enseñanza del sistema métrico decimal, descripción sintetica de figuras, de objetos simples, ejercicios de conversión. Enunciados con propiedades observables sin establecer vínculos, descriptivo, vocabulario convencional, teoria fisica, explicativo.
Contemplación de objetos.
No se enseña geometría para contribuir al desarrollo del dominio de sus relaciones de espacio.
1970 se propone la manipulación y actividad centrada en el alumno.
Aparecen actividades sobre cuadriculas.
Puntos en el plano, trayectos
Trasformaciones geométricas, traslaciones, agrandaciones y simetría.
Actuar sobre objetos reales y obtener información.
Organizar la información
Se concientiza sobre que se quiere obtener con la enseñanza de la geometría en actividades y aptitudes.
El camino es la exploracion efectiva del entorno del niño, organizado en funcion de los niños invitados a dirigir sus observaciones, seleccionando y clasificando.
Clasificar objetos por su forma, acciones.
Enriquecer simultáneamente los dominios numerico y geometrico
Instrumentos y objetos variados.
















ACTIVIDADES
OBJETIVOS
Juego de descripción
Descubrir elementos
Introducir vocabularios
Situación de comunicación con intercambio de mensajes.

Construccion de patrones
Toma de conciencia de la necesidad de medir, inventar tecnicas y utilzar instrumentos.
Utilización de foros
Utilizar regla, escuadra compas
Implica el estudio de las propiedades de ciertos objetos del espacio visual.
Recorte, doblado, pegado, armado


























LECTURA: La geometría, la psicogenesis de las nociones espaciales y la enseñanza de la geometría en la escuela elemental.

ORIGEN: Egipto ligado a problema practico “La reconstitución de los limites de los terrenos después de la crecida del Nilo. Grecia como ciencia empírica

Surge como control de relaciones espaciales, edificio, carreteras.
El análisis etimológicos de los términos empleados en la geometría euclidiana muestra su origen fisico y dinamico triangulo isósceles 2 piernas escaleno (cojo) rombo (trompo)

PSICOGENESIS DE NOCIONES ESPACIALES

Piaget

Los conceptos espaciales se van construyendo progresivamente a partir de las experiencias de desplazamiento del sujeto. Para un sujeto inmóvil no existe espacio ni geometría.
Localizar un objeto es representarse los movimientos que habria que hacer para alenzarlo.

Construcción de lo real en el niño (espacio, causa, tiempo) primeros años de vida, desarrollo de la inteligencia sensomotriz
El sujeto elabora espacio especificos para cada dominio sensomotor

A medida que el niño progresa aparece el espacio circunscrito
Aprende a evitar obstáculos.
Le genesis para por la interiorización de la imitación de la accion personal sobre los objetos.
Intuición.
La motricidad (perceptual o manual) aparece como un componente necesario para elaborar imágenes)

TESIS DE PIAGET

En el dominio de la geometría el orden genetico de adquisición de nociones espaciales es INVERSO al orden historico del progreso de la ciencia. El niño considera primero las relaciones topográficas de una figura y solo posteriormente las proyectivas que son construidas de modo simultaneo.

En prim. Se contribuye al desarrollo por parte de los alumnos del dominio de sus relaciones con el espacio.

El alumno aprende a través de las interacciones espontáneas con el medio, las estructuras que le permitirán desenvolverse con propiedad en el espacio.

Generar situaciones en las que los alumnos se planteen problemas relativos al espacio e intenten resolverlos basados en sus concepciones espontáneas.

Lectura: Introducción al curso de sistemas decimales de medición.

Irma Saiz

MAT
Integrar Disciplinas de enseñanza
Recurso
C.N
Ciencias Humanas








Medicion
Didactica
Recursos
Comparación Global Fisica
Comparación Directa
Comparación indirecta
Uso de unidades de Medida
Recursos
Material Concreto
Uso de medidas arbitrarias
Medidas convencionales